

Introduction to the lecture

- Lecture of Geothermal energy has 3 parts.
- ➤ Part 1 focuses on the fundamental concept of geothermal energy, history of geothermal energy, present global status of geothermal utilization, advantages, origin, nature of geothermal energy and global geothermal sites.
- > Part 2 provides an overview of mechanism for geothermal power plant.
- > Part 3 discusses on the utilization of geothermal resources and its environmental impacts.

Aim and Learning outcomes

- The aim is to introduce students to the concept, utilization, mechanism and environmental impacts of geothermal energy.
- > On completion of lecture "Geothermal energy" students will be able to:
 - ➤ Identify the fundamental concept, physical characteristics and processes in geothermal systems.
 - Differentiate between types of geothermal resources and their location.

Aim and Learning outcomes

- On completion of lecture "Geothermal energy" students will be able to:
- ➤ Know the mechanism of geothermal power plant and its types.
 - Distinguish between the different types of geothermal technologies and appropriate uses of them.
 - ldentify environmental impacts and benefits of geothermal energy exploitation.

Talk outline

- Part-I
- Introduction Geothermal Energy
 - Geothermal History
 - Present status of geothermal utilization
 - Origin and nature of Geothermal Energy

Talk outline

- Part-
- How does a Geothermal power plant work?
 - Geothermal power plant

evaporation process,

utilizing the heat of the boric fluids in the

Environmental Impacts

Air pollution may become a problem when **generating electricity in conventional power-plants**. Hydrogen sulphide is one of the main pollutants. Carbon dioxide is also present in the fluids used in the geothermal power plants,

Discharge of waste waters is also a potential source of chemical pollution. Spent geothermal fluids with high concentrations of chemicals such as boron, fluoride or arsenic should be treated, re-injected into the reservoir, or both

Extraction of large quantities of fluids from geothermal reservoirs may give rise to *subsidence* phenomena, i.e. a gradual sinking of the land surface. This is an irreversible phenomenon, but by no means catastrophic, as it is a slow process distributed over vast areas.

The withdrawal and/or re-injection of geothermal fluids may trigger or increase the frequency of *seismic events* in certain areas.